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Parking Cars with Spin but no Length
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The car parking problem is a one-dimensional model of random packing. Cars
arrive to park on a block of length x, sequentially. Each car has, independently,
spin up or spin down, w.p. 0<p�1, for spin up and q=1& p for spin down,
respectively. Each car tries to park at a uniformly distributed random point
t # [0, x]. If t is within distance 1 of the location of a previously parked car of
the same spin, or within distance a of the location of a previously parked car
of the opposite spin, then the new car leaves without parking and the next car
arrives, until saturation. We study the problem analytically as well as numeri-
cally. The expected number of up spins c( p, a) per unit length for sufficiently
large x is neither monotonic in p for fixed a, nor is it monotone in a for fixed p,
in general. An intuitive explanation is given for this nonmonotonicity.

KEY WORDS: Parking; probability model; Laplace transform; vector dif-
ferential equation; explicit solution.

1. INTRODUCTION

Three-dimensional random sequential packing was applied to discuss the
geometric strucure of a liquid by Bernal.(1) Car parking problems are one-
dimensional models for random sequential packing. In the most common
version of the problem cars are parked sequentially at random on a street
until saturation when no more cars can be parked. Using an interesting
analytical method, Renyi(11) obtained the packing density (parking con-
stant) cR.0.748 for the model, which is now well known in the field of
probability theory. Other fields use different but similar models.

Lattice models have played a central role in the development of equi-
librium statistical mechanics. In the standard lattice-gas representation, the
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sites of the lattice have one of two states, empty�vacant, ``o'', or filled�
occupied, ``x''. The kinetics of equilibration has also been studied for these
models. The car parking problem on a discrete street is equivalent to a lat-
tice-gas model which involves sequential adsorption where the state of sites
is assumed to change irreversibly from empty to fille, o � x. In the simplest
case, adsorption sites are chosen randomly. Such processes are termed
random sequential adsorption (RSA). The related field has an enormous
ammount of activity and was reviewed by Evans.(4)

Renyi's exact analysis for the random parking of unit length cars is
based on the observation that after the first car parks on a finite interval,
one is left with car parking problems on two smaller intervals. This idea is
also used in Flory's combinatorial argument(6) for random sequential
dimer filling. He gave the coverage rate 1&e&2.0.865. Cohen and Reiss(2)

studied its kinetics by using the rate equation analysis, extending the idea
by Flory. Renyi's method to get the parking constant is based on the
Laplace transform of the expected number of cars and can be applied to
various situation of random space filling. The parking constant is obtained
by a direct physical method based on a statistical independence without
taking the Laplace transform (Hemmer(7) and Krapivsky (9)).

Assuming the very strong nearest-neighbor repulsive interactions (NN
exclusions) which effectively block the occupation of adjacent adsorption
sites, where longer range interactions can be ignored, RSA of monomers
with NN exclusion is isomorphic to one-dimensional random dimer filling.
Each monomer corresponds to a dimer on the dual lattice. More generally
1D M-mer filling is isomorphic to 1D monomer filling with range M&1
blocking.

The car parking problem has applications in biological or sociological
problems (Tanemura and Hasegawa(12) and Itoh(8)) as is reviewed by
Evans.(4) Unfriendly seating arrangement by Freedman and Shepp(5) is
equivalent to RSA of monomer with NN exclusion. We extend their
problem to the car parking problem with spins, assuming that a car is
friendly with a car of different spin and unfriendly with a car of the same
spin. Each car has, independently, spin up or spin down, w.p. 0<p�1, for
spin up, and q=1& p, for spin down, respectively. A car is not allowed to
be parked within distance 1 of the location of a previously parked car of
the same spin, or within distance a of the location of a previously parked
car of the opposite spin. Our model assumes repulsive forces depending on
the neighboring spins, and does not assume the length of cars. Our model
is a generalization of the 1D monmer filling range M&1 blocking, which
is a dual of 1D M-mer filling.

Our model may be applied to RSA in the Widom�Rowlinson binary
gas model (Widom and Rowlinson(13)) in which there are two kinds of
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particles, with different distance requirements depending on whether two
particles are the same type or different. Their model also assumes the dis-
tance between like species is shorter than the distance between unlike
species, and we focus also on this case, but the other case is also interesting.

The car parking problems without spins have been considered and
solved by Renyi, (11) Ney, (10) and Dvoretsky and Robbins, (3) who obtained
explicit expressions for the constant, c, in their versions, in terms of
integrals, by solving a first order ordinary differential equation for the
Laplace transform, ,(*), of f, and calculating the limit at *=0, using the
fact that c=limx � �( f (x)�x)=lim* � 0 *2,(*). Let the expected number of
up cars in saturation be c( p, a) for our car problem with spin. The
c=c( p, a), apparently cannot be written in closed form in general. Despite
this, we give an algorithm for calculating c( p, a) to arbitrary numerical
precision in Section 4. Our solution is perhaps not really so different from
an explicit determination of c since evaluation of the integrals involved in
the earlier determinations must also be performed by a numerical algo-
rithm. The difference is that one now cannot even solve the differential
equation directly in closed form, since it is no longer first order. A direct
attack by numerical methods on the differential equation seems difficult
because the Laplace transform is singular at zero, and the limit is taken at
zero, as discussed. Instead, we give a new technique for the non-commuting
matrices which arise in the differential equation for the Laplace transform,
which we hope can be generalized to other problems in applied proba-
bilistical physics of similar type involving non-commutativity of matrices.

In the special case, p=1�2, the matrices do commute and the usual
methods for differential equations for systems with commuting matrices can
be used to solve the differential equations explicitly, and we obtain an
explicit expression for c( 1

2 , a) involving an integral, similar to those in the
earlier works, in Section 3.

It is surprising (see Figures 2�4) that c( p, a) is neither monotonic in
a for fixed p, nor is it (see Figures 5�7) monotone in p for fixed a, in
general. A post-facto intuitive explanation is given in Section 5.

2. VECTOR RECURRENCE

Cars arrive to park on a block of length x, sequentially. Each car has
a spin up or down, w.p. 0<p�1, for spin up, independendently, and each
chooses to park at a uniformly distributed random point t # [0, x]. If t is
within distance 1 of the location of a previously parked car of the same
spin, or within distance a of the location of a previously parked car of the
opposite spin then the new car leaves without parking and the next car

211Parking Cars with Spin but no Length



arrives, until saturation, when no more cars can park on [0, x]. It's easy
to see (using sub-additivity arguments) that, asymptotically as x � �, the
expected number of spin up cars in saturation is tc( p, a) x. We give a
formula for c( p, a) usable for numerical calculation when 1

2�a�1 which
will suffice to demonstrate the method. The cases a< 1

2 , and a>1 can be
treated by the same method, but the calculations are more tedious, and we
have not carried them out. The expected number of cars for a block of
length x can be written as an integral equation�recurrence which in turn
gives rise to non-commuting matrices, and a new technique is found to deal
with these. In the special case, p=1�2, the matrices do commute and the
usual methods for commuting matrices, can be used to give a more conven-
tionally explicit value for c( 1

2 , a), which we give.
The method could be extended (but we have not done it) for the case

of many spin types, i=1,..., n and with arbitrary probabilities, pi , for cars
of each spin type, i, and for an arbitrary matrix of allowed distances,
ai, j between cars of spin i, j. We anticipate that there will be other
problems in physics involving non-commutative matrices where our new
technique will be useful to obtain numerical answers where explicit for-
mulas in terms of elementary functions may be impossible.

The case a=1 is equivalent to a problem posed and solved by
Renyi(11, 3) when cars have no spin but length, and cars are not allowed to
overlap. Renyi(11) shows that the expected number of cars of length one
that park in saturation on a block of length x is asymptotic to cRx, as
x � �, where cR=��

0
e&2 �u

0 [(1&e&v)�v] dv du.0.7475798. Renyi's results
were sharpened by Dvoretzky and Robbins, (3) and generalized by Ney(10)

to the case where cars have a random length. The Renyi case is common
to both the problem of length and the problem of spin. Another version of
the problem, where cars do not leave but always park in the available
space, if space is available, would be closer in spirit to the Ney extension,
but we do not treat this case. It should not be hard to extend our method
to handle this case as well, but we have not done it. It is also possible to
generalize our results to more than two spins, as discussed above, but we
have not done this either.

The reason that ``spin problems'' are more difficult than ``length
problems'' is that in a spin problem the recurrence is a vector recurrence
while in a length problem it is a scalar or one-dimensional recurrence. Thus
the real contribution of this paper is to develop methodology for problems
involving recurrences which deal with multi-dimensional arrays when the
matrices involved do not commute. Renyi(11) emphasizes the one-dimen-
sional character of the problem. In a sense, the spin problems are not one
dimensional, but we show they can also be solved in a ``numerically
explicit'' sense.
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It is not hard to obtain the following recurrence for the expected num-
ber of cars in equilibrium, conditional on having cars already parked at the
endpoints, with specified spins, in the following way.

After the first car with a spin parks on a finite interval, we have car
parking problems on two smaller intervals. Let fAA(x) denote the expected
number of up-cars in saturation in a block of length x with two up-cars at
the endpoints, and let faa(x) and fAa(x) be defined similarly, again, keeping
track only of up-cars.

Then, clearly, for x>2,

fAA(x)=p |
x&1

1
( fAA(u)+ fAA(x&u)+1)

du
x

+q |
x&a

a
( fAa(u)+ fAa(x&u))

du
x

+\p
2
x

+q
2a
x + fAA(x) (1)

faa(x)=p |
x&a

a
( fAa(u)+ fAa(x&u)+1)

du
x

+q |
x&1

1
( faa(u)+ faa(x&u))

du
x

+\p
2a
x

+q
2
x+ faa(x) (2)

fAa(x)=p |
x&a

1
( fAA(u)+ fAa(x&u)+1)

du
x

+q |
x&1

a
( fAa(u)+ faa(x&u))

du
x

+\ p
1+a

x
+q

1+a
x + fAa(x) (3)

where we have used fAa(x)= f a A (x) which holds by symmetry (Fig. 1), and
we have the term ( p(2�x)+q(2a�x)) fAA(x) for the case that the first car
can not park in the equation (1), similarly for other equations (2) and (3).

It is clear from the fact that f_(x) is sub-additive, that the limit
c_=limx � � f_(x)�x exists. It follows easily from the above recurrence that
c_ does not depend on _ ( just substitute the asymptotic forms and one gets
equations among c_ , which easily imply that c_ is independent of _), i.e.,
that end effects can be neglected. But it is false that one can erase the _'s
from the above recurence and still get the right limit.

Note that for 0<x<2 we can write down f_(x) explicitly for
1�2<a<1, (this gets somewhat more complicated for other values of a).
Indeed, for x<2, and 1�2�a�1, it is clear that

fAA(x)=0, 0<x<2;

faa(x)=0, 0<x<2a, faa(x)=1, 2a<x<2,

fAa(x)=0, 0<x<1+a, fAa(x)= p, 1+a<x<2
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Fig. 1. Parking cars with spin in a block of length x with two up-cars at the end points.

Now take Laplace transforms , (with lower limit at x=2) of f defined
for *>0, and use the starting relations in x<2, above to calculate

,_(*)=|
�

2
e&*xf_(x) dx (4)

where _ can be any one of the pairs, AA, aa, and Aa.

3. COMMUTATIVE CASE

It is easy to verify that, c( p=1, a)#cR for any a, because when p=1,
only up cars appear and cars of opposite spins do not arise. It's also clear
that c( p, a=1)= pcR , because if a=1 then spin is irrelevant since all dis-
tances between cars must be >1, and we are as well in the situation where
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cars have length, and if we count only up cars we get p times Renyi's con-
stant. Finally we note that c( p, a) is not continuous at p=0, because
c( p=0, a)=0 because there are no up cars at all, but if p is small but
positive, then, essentially, only down cars arrive until these become
saturated, and then exactly one up car can park in those spaces between
adjacent down cars, of length 2a<x<2. Thus the mean number of spaces
in saturation having a length >a, in Renyi's problem, is asymptotically,
c( p=0+, a) x for an initial block of length x. We can give the number,
c(0+, a), explicitly since in this case, the problem separates (because A(*)
has two zeros in its middle row when p=0) and so the recurrence for
,aa does not involve the other variables. The answer is c(0+, a)=
��

0
(e&(2a&1) u&e&u) e&2 �u

0 [(1&e&v)�v] dv du. In cases other than p=0,
p=1�2, p=1, or a=1, explicit representation of c( p, a) appears to be
impossible in terms of elementary functions, although we succeed in giving
an algorithm for determing c( p, a) to arbitrary precision, and a partially
explicit formula for c( p, a).

One obtains, after a calculation, the column-vector equations,

8$(*)+A(*) 8(*)+g(*)=0 (5)

where 8(*)=(,AA(*), ,aa(*), ,Aa(*))T and where A(u) is the matrix,

2p+2aq+
2pe&u

u
0

2qe&au

u

\ 0 2ap+2q+
2qe&u

u
2pe&au

u +pe&au

u
qe&au

u
1+a+

e&u

u

and g(*)=(gAA(*), gaa(*), gAa(*))T, where

gAA(*)=
pe&2*

*2 +
2pqe&a*

*2 (e&(1+a) *&e&2*)

gaa(*)=
pe&2*

*2 +
2p(1&a) e&2*

*
+

2p2e&a*

*2 (e&(1+a) *&e&2*)

+
2qe&*

*2 (e&2a*&e&2*)
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gAa(*)=
pe&2*

*2 +
p(1&a) e&2*

*
+ p

e&*

*2 (e&(1+a) *&e&2*)

+/ \a�
2
3+ q

e&a*

*2 (e&2a*&e&2*)

+/ \a<
2
3+

q
* \(2&3a) e&2*+

(e&2*&e&(2+a) *)
* +

In the case of Renyi, and all the cases considered by Ney, the equation
above is a scalar one, ,$(*)+A(*) ,(*)+ g(*)=0 with A(*)=1+2e&*�*,
g(*)=e&*�*2 and one can use the familiar differential equation trick of the
variation-of -constants formula to solve for , in closed form, as Renyi did:

,(*)=|
�

*
g(u) e� u

* A(v) dv du

or, more explicitly,

,(*)=|
�

*

e&*

u2 e� u
* (2e&v�v) dv du

Now it is a simple matter to find the limiting fraction of the expected
number of cars of length one in the Renyi case, since, we can write,

*2,(*)=|
�

*
e&*e&2 �u

* [(1&e&v)�v] dv du

and by the Abelian theorem for Laplace transforms,

cR= lim
x � �

f (x)�x= lim
* � 0

*2,(*)=|
�

0
e&2 � u

0 [(1&e&v)�v] dv du

This method does not extend to the case where A(*) is a matrix unless
the matrices, A(*), all commute, as in the scalar, or Renyi, case, because
explicit solution of the differential equation is possible only in the com-
mutative case. For parking with spins, commutativity holds only in the
case when p=1�2. We have to find a new way to carry the result further
for p{1�2. Note that if F(x) is the expected time until saturation, then
F(x)>1�(x&1), for 1<x<2, which is not integrable and so it follows
from the integral equation for F, similar to the one for f, that for x>2,
F(x)#�, i.e., small intervals arise and these lead to (many) refused cars,
and long waits.
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One may write, an exact solution for the vector 8, valid even in the
non-commutative case,

8(*)= :
�

n=1
|

*<u1<u2 } } } <un

A(u1) A(u2) } } } A(un&1) g(un) du1 } } } dun (6)

which can be verified by formal differentiation. However this formula seems
quite useless for obtaining the constant c( p, a). If the A's commute, then
the n th term of the series can be written as

|
�

*
g(u)

�u
* A(v) dvn&1

(n&1)!
du (7)

and then the series can be summed to give

8(*)=|
�

*
g(u) e�u

* A(v) dv du (8)

It is easy to verify that, when p=1�2,

A(u)=\1+a+
e&u

u + I+
e&au

u
B (9)

where B does not depend on u. Hence the matrices, A(u) commute. This
allows us to carry out the explicit solution for 8 above. We get,

8(*)=|
�

*
g(u) e�u

* A(v) dv du (10)

and it's a simple calculation, representing g(u) as a linear combination of
the (common) eigenvectors of A(u) to obtain the constant. The answer is
easiest to give using the methods of the non-commutative case, however, as
we do at the end of the next section.

4. p{1�2; THE NON-COMMUTATIVE CASE

We proceed instead, for p{1�2 to seek a matrix, 9(*) satisfying

9$(*)=9(*) B(*) (11)
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where

B(*)=A(*)&\2+
2
*+ I

Although existence theory for differential equations guarantees the exist-
ence of 9, it is not clear how to find 9 explicitly. If we can do this, then
we can write

(*2e2*9(*) 8(*))$

=*2e2* \\2
*

+2+ 9(*) 8(*)+9$(*) 8(*)+9(*) 8$(*)+
=*2e2* \2

*
+2+ 9(*) 8(*)+9(*) B(*) 8(*)

+9(*)(&A(*) 8(*)&g(*))

=&9(*) *2e2*g(*) (12)

where we have used the equation (5).
It now follows easily that we have explicitly,

9(*) *28(*)=|
�

*
9(u) h(u) du (13)

where h(u)=u2e2ug(u). Explicitly,

hAA(u)= p+2pq(e&(2a&1) u&e&au)

haa(u)= p+2p(1&a) u+2p2(e&(2a&1) u&e&au)+2q(e&(2a&1) u&e&u)

hAa(u)= p+ p(1&a) u+ p(e&au&e&u)+/(a� 2
3) q(e&(3a&2) u&e&au)

+/(a< 2
3) q((2&3a) u+1&e&au)

Now we would like to write a solution for 9 that would enable us to
calculate the limit

(c, c, c)T= lim
* � 0

*28(*)

We have not yet specified the initial condition on 9. One might choose
9(0)=I so that we have a formula for *28(*), but this is not a good idea
because then 9(*) will not be analytic at *=0. Instead, we will choose
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9(0), as a degenerate matrix of 3 identical rows. The reason is that we seek
a power-series solution in the form

9(*)= :
�

n=0

9n *n (14)

and we will not be able to satisfy this if 9(0)=I. For a power series expan-
sion of 9(*), we find that the equation (11) becomes

:
n>0

n9n*n&1= :
n�0

9n*n :
n�&1

Bn*n (15)

which gives the condition, that 90B&1=0. Now, B&1 is the matrix,

&2q 0 2q

\ 0 &2p 2p +p q &1

and the equation, 90B&1=0 says that each row of 9(0) must be a mem-
ber of the nullspace of B&1 . It turns out that we may as well take 9(0) to
have identical rows, each ( p2, q2, 2pq), which is a left eigenvector of B&1 ,
with eigenvalue zero, as may be verified. This specifies 90 . For n�0, we
have the recurrence,

9n+1((n+1) I&B&1)= :
n

k=0

9n&kBk (16)

or

9n+1=\ :
n

k=0

9n&kBk+ ((n+1) I&B&1)&1 (17)

and we see that for each n, 9n is a matrix with identical rows, each of
which we will also denote by 9n .

B0 is the matrix

2aq&2 0 &2aq

\ 0 2ap&2 &2ap+&ap &aq &1
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and for k�1, Bk is the matrix,

2p
(&1)k+1

(k+1)!
0 &2q

(&a)k+1

(k+1)!

\ 0 &2p
(&1)k+1

(k+1)!
2p

(&a)k+1

(k+1)! +p
(&a)k+1

(k+1)!
q

(&a)k+1

(k+1)!
(&1)k+1

(k+1)!

This specifies 9n for all n�0, recursively, because the matrix
(n+1) I&B&1 is never singular since its eigenvalues are n+1, n+2, n+3
and hence non-zero. Thus we can write the formula for the filling constant,
c=c( p, a), as

c( p, a)=|
�

0
9(u) h(u) du (18)

or

c( p, a)=|
�

0
:

n�0

9n unh(u) du (19)

where h(u)=u2e2ug(u), and g is given in Section 1. We have used the fact
that the sum of the components of 90 is unity.

Why does this technique work to give a usable algorithm to determine
c( p, a), when a direct technique based on the differential equation for 8
fails to work? There seem to be two reasons: (1) the initial condition for
8 is non-existent, since the value of 8(0)=�, and (2) the technique above
with 9 separates g out of the problem and allows 9(0) to have a finite
value.

In the commutative case, p=1�2, we can use the above formula to
obtain a completely classically explicit expression for the answer in terms
quite similar to Renyi's case. Indeed now we have inside the one dimensional
subspace generated by ( p2, q2, 2pq)=(1�4, 1�4, 1�2) in the case p=1�2 we
can write 9(u)=vf (u), where v=(1�4, 1�4, 1�2), because of the commu-
tativity of the A(u). We find that f $(u)= f (u)(a&1+(e&u+e&au&2)�u)
and so we get easily that

c( p=1�2, a)=|
�

0
e(a&1) u&�u

0 [(1&e&v)�v+(1&e&av)�v] dv ( 1
4 , 1

4 , 1
2) h(u) du (20)
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where h(u) is given explicitly above, for p=1�2, by

hAA(u)= 1
2+ 1

2 (e&(2a&1) u&e&au)

haa(u)= 1
2+(1&a) u+ 1

2 (&(2a&1) u&e&au)+(e&(2a&1)&e&u)

hAa(u)= 1
2+ 1

2 (1&a) u+ 1
2 (e&au&e&u)+/(a� 2

3) 1
2 (e&(3a&2) u&e&au)

+/(a< 2
3) 1

2 ((2&3a) u+1&e&au)

Remark 1. In the general non-commutative case, one could, in
principle, interchange the sum and integral and integrate, term-by-term, to
obtain,

c= :
n�0

9n |
�

0
un h(u) du

but this sum does not converge even in the Renyi case. To see this, note
that this would mean in the Renyi case where g(u)=e&u�u2, that

c= :
n�0

9nn !=|
�

0
9(u) e&u du

where 90=1, and for n�0,

(n+1) 9n= :
n

k=0

9n&kbk

But if the above series converged, then the function, 9, would be of
exponential type 1, since 9n n! must tend to zero. But in the Renyi case we
know that 9(u)=eu&2 �u

0 [(1&e&v)�v] dv du and this is not entire of type 1 as
we see by letting u be large negative. However, we can still use the integral
for numerical evaluation of c( p, a). The formula obtained gives an algo-
rithm, at least in principle, to find it.

Remark 2. We can simplify the recurrence for the 9n by noting
that the inverse of (n+1) I&B&1 can be written as

((n+1) I&B&1)&1=
1

n+1
A0+

1
n+2

A1+
1

n+3
A2

where Ai , i=0, 1, 2 are given as Ai=ri_li , where ri , l i are the right and
left eigenvectors of B&1 . This is obtained by noting that the eigenvalues of
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((n+1) I&B&1)&1 are (n+1)&1, (n+2)&1, (n+3)&1 and that the left
eigenvectors of B-1 corresponding to the eigenvalues, 0, &1, &2 of B&1 are
l0=( p2, q2, 2pq), l1=(&p, q, p&q), l2=(1, 1, &2). Similarly the right
eigenvectors of B&1 are r0=(1, 1, 1)T, r1=(&2q, 2p, p&q)T, r2=(q2, p2,
&pq)T. Thus,

p2 q2 2pq
A0=\ p2 q2 2pq +p2 q2 2pq

2pq &2q2 &2pq+2q2

A1=\ &2p2 2pq 2p2&2pq +& p2+ pq pq&q2 ( p&q)2

q2 q2 &2q2

A2=\ p2 p2 &2p2 +& pq & pq 2pq

5. NUMERICS

The new approach may shed light even in the commutative case. Thus
suppose that we did not know the exact solution for *2,(*) in the form of
the exponential of an integral in the Renyi case. We could try to proceed
via the power series. Which method would give better numerical perfor-
mance?

In calculating cR=��
0 e&2 � u

0 [(1&e&v)�v] dv du, it is preferable to use the
alternative expression, cR=2 ��

0 e&u&2 �u
0 [(1&e&v)�v] dv du, obtained by inte-

gration by parts from the first expression, choosing u=u, in the usual v du
notation for integrating by parts.

A similar technique works for the general case, starting from the main
formula (18), and integrating by parts we get,

c( p, a)=&|
�

0
u(9(u) h(u))$ du

=&|
�

0
u \9(u) A(u)&\2+

2
u+ I+ h(u)+9(u) h$(u)) du (21)

Now in making a numerical quadrature of the integral to obtain
c( p, a), one could calculate 9(u) for each needed value of u either from the

222 Itoh and Shepp



File: 822J 240215 . By:XX . Date:14:10:99 . Time:08:31 LOP8M. V8.B. Page 01:01
Codes: 670 Signs: 195 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Plot of c( p, a) for fixed p=0.5 as functions of 0.5<a<1 in steps of 0.01.

Fig. 3. Plot of c( p, a) for fixed p=0.7 as functions of 0.5<a<1 in steps of 0.01.
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Fig. 4. Plot c( p, a) for fixed p=0.9 as functions of 0.5<a<1 in steps of 0.01.

Fig. 5. Plot of c( p, a) for fixed a=0.5 as functions of 0<p<1.
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power series representation given in Section 2, or, alternatively, directly
from the differential equation. If one used the former method, then if the
step size for the quadrature is $, then the quadrature sum, based on the
trapezoid rule, which we will call J($) should have a power series with
only even powers of $, namely J($)=J(0)+c2$2+ } } } , where J(0) is the

Fig. 6. Plot of c( p, a) for fixed a=0.52 as functions of 0<p<1.
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actual value of the integral, i.e., c( p, a). If, instead, however, we use the dif-
ferential eqation to update the needed values of 9(u), then, because of the
inherent error of comuting 9(un+1) from the value at un , the quadrature
sum will have all powers of $, and a smaller step size must be used in
using Simpson's or Romberg's rule. Nevertheless, for ease of programming

Fig. 7. Plot of c( p, a) for fixed a=0.54 as functions of 0<p<1.
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we chose the second method which seems to work quite well. The follow-
ing simple C program computes the value of c( p, a) for all values of
p # [0, 1] and a # [ 1

2 , 1] to 5 decimal place accuracy, as was checked by
halving the step size and verifying that the results agreed to at least 5 digit
accuracy.

Fig. 8. An expansion of the region of the oscillations in Fig. 6 is given.
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If the step size is doubled, from that indicated (0.01), then the last decimal
place accuracy is lost.

We made direct simulations to make sure the numerical values. In the
Renyi case, for the expected number +(x) of cars in a street of length x, the
form (+(x)+1)�(x+1) gives a very good approximation of the parking

Fig. 9. c( p, 0.6), is again monotonic in p.
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Fig. 10. Program that generated the data for the figures.
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constant cR even for small x. By making numrical studies for our problem
for the discrete street, we experimentally found that the form

c( p, a, x)=
p2fAA(x)+q2faa(x)+2pq fAa(x)+ p

x
(22)

gives a good approximation to the c( p, a) even for small x. This approxi-
mation formula may be verified analytically. We make use of this form for
our simulation of seven decimal precision for the continuous street. We
make 10,000 trials for each of the three f, fAA(x), faa(x), fAa(x) and obtained
c( p, a, 15) and c( p, a, 20) for every 0.05 of 1�2�a�1 for p=0.5, 0.7, 0.95.
The values by our simulations agree with the values obtained by our
numerical method by three decimals.

Figures 2�4 plot c( p, a) for fixed p=0.5, 0.7, 0.9 as functions of
0.5<a<1 in steps of 0.01 (we only have considered this range of a).
Figures 5�7 plot c( p, a) for fixed a=0.5, 0.52, 0.54 as functions of 0<p<1.
Note that c( p, a) is not monotonic in p in Figs. 5 and 6, which at first was
surprising to us. A post-facto and intuitive explanation is that for smaller
p there will be, as parking nears saturation, more intervals with length,
1<L<2 with down spins at each endpoint, than there would be such
intervals with up spins at the endpoints, for larger p. In either case, the spin
of the last car to park in such an interval is determined and must be the
opposite spin to those at the ends. Note also that c( p, a) is neither
monotonic in a for fixed p in Fig. 4. Here the explanation is even more sub-
tle and post-facto. We believe it is that for fixed large p, close to 1, an inter-
val, waiting for its last car and of length slightly larger than 2 is likely to
have up-spin cars at its endpoints, and then is more likely to be filled by
a car with down spin if a is smaller than when a is larger. Thus making a
smaller keeps down the number of up-spin cars parking in the last avail-
able space. Finally, note the very strange oscillations in c( p, a) in Figs. 6
and 7 for a=0.52, 0.54, near p=0. An expansion of this region is given in
Fig. 8 for a=0.52. Figure 9 shows c( p, 0.6), again monotonic in p.

We give in Fig. 10 a listing of the program that generated the data for
the figures.
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